Step of Proof: eq_int_eq_false_elim
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
eq
int
eq
false
elim
:
1.
i
:
2.
j
:
3. (
i
=
j
) = ff
i
j
latex
by ((Decide
i
=
j
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
4.
i
=
j
C1:
i
j
C
.
Definitions
t
T
,
a
b
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
Dec(
P
)
Lemmas
decidable
int
equal
origin